Activation of vitamin D receptor signaling downregulates the expression of nuclear FOXM1 protein and suppresses pancreatic cancer cell stemness.
نویسندگان
چکیده
PURPOSE Dysregulated signaling of nuclear transcription factors vitamin D receptor (VDR) and Forkhead box M1 (FOXM1) plays important roles in transformation and tumorigenesis. In this study, we sought to determine whether VDR signaling causally affected FOXM1 signaling in and pathogenesis of pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN Genetic and pharmacologic approaches were used to manipulate VDR signaling. The impacts of altered VDR signaling on FOXM1 expression and function in PDAC cells were determined using molecular and biochemical methods, whereas those on PDAC cell biology and tumorigenicity were determined using in vitro and in vivo experimental systems. The clinical relevance of our findings was validated by analyzing human PDAC specimens. RESULTS There was a striking inverse correlation between reduced expression of VDR and increased expression of FOXM1 in human PDAC cells and tissues. Treatment of PDAC cells with 1,25-dihydroxyvitamin D3 (1,25D), its synthetic analogue EB1089 (EB), and VDR transgenics drastically inhibited FOXM1 signaling and markedly suppressed tumor stemness, growth, and metastasis. Mechanistically, 1,25D and EB repressed FOXM1 transcription and reduced the expression level of nuclear FOXM1 protein. CONCLUSION Inactivation of Vitamin D/VDR signaling is a critical contributor to PDAC development and progression via elevated expression and function of FOXM1 and enhanced PDAC cell stemness, invasion, and metastasis.
منابع مشابه
All-trans retinoic acid downregulates ALDH1-mediated stemness and inhibits tumour formation in ovarian cancer cells Ming-Jer Young, Yi-Hui Wu1, Wen-Tai Chiu2, Tzu-Yu Weng, Yu-Fang Huang1 and Cheng-Yang Chou2,*
Aldehyde dehydrogenase 1 (ALDH1) is a cancer stem-like cell (CSC) marker in human cancers; however, the specific ALDH1regulated function and its underlying signalling pathways have not been fully demonstrated. Here, we investigated the ALDH1-regulated function and its underlying signalling and tested whether all-trans retinoic acid (ATRA) can suppress ALDH1-regulated tumour behaviour in ovarian...
متن کاملThe role of polymorphism of TaqI in Vitamin D receptor gene and risk of ovarian cancer in women of North India
Background & objective: Ovarian cancer mortality is associated with lower regional sunlight exposure. Vitamin D and its metabolites are best known for their action in calcium and bone metabolism. However, epidemiological studies have suggested that an increased ovarian cancer risk is associated with decreased production of vitamin D. The vitamin D signaling pathway is involved in a wide variety...
متن کاملFOXM1c promotes pancreatic cancer epithelial-to-mesenchymal transition and metastasis via upregulation of expression of the urokinase plasminogen activator system.
PURPOSE The transcription factor Forkhead box M1 (FOXM1) plays important roles in the formation of several human tumors, including pancreatic cancer. However, the molecular mechanisms by which FOXM1 promotes pancreatic tumor epithelial-to-mesenchymal transition (EMT) and metastasis are unknown. EXPERIMENTAL DESIGN The effect of altered expression of FOXM1 and urokinase-type plasminogen activa...
متن کاملHuman Cancer Biology FOXM1c Promotes Pancreatic Cancer Epithelial-to- Mesenchymal Transition and Metastasis via Upregulation of Expression of the Urokinase Plasminogen Activator System
Purpose: The transcription factor Forkhead box M1 (FOXM1) plays important roles in the formation of several human tumors, including pancreatic cancer. However, the molecular mechanisms by which FOXM1 promotes pancreatic tumor epithelial-to-mesenchymal transition (EMT) and metastasis are unknown. Experimental Design: The effect of altered expression of FOXM1 and urokinase-type plasminogen activa...
متن کاملFOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression.
PURPOSE The transcription factor Forkhead box protein M1 (FOXM1) plays critical roles in cancer development and progression. However, the regulatory role and underlying mechanisms of FOXM1 in cancer metabolism are unknown. In this study, we characterized the regulation of aerobic glycolysis by FOXM1 and its impact on pancreatic cancer metabolism. EXPERIMENTAL DESIGN The effect of altered expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2015